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(6)Summary and Conclusions
- According to our empirical study results there are some conclusions
which can presented as; For all sample sizes, MSE decreases with increasing
sample size for all estimation methods under all error distributions as shown in
the tables in appendix (B) for sample sizes 50 and 100. In the case of normal
errors distribution, S is the most efficiency compared other methods, but MM
is the more efficiency compared S method and is much better in outlier
generating error distribution. Although robust methods are efficiency
compared OLS but The performance of MM method is high efficiency in the
case of Normal errors distribution.Efficiency at 10% contamination is higher
than 30% contamination for small sample sizes. v
- In the case of Chi-square errors distribution, MSE decreases with
increasing sample size, MH is the most efficiency compared other methods
when the sample size is small, but the greater the sample size to be MM is the
most‘efﬁciency. RE for all methods increase as sample sizes increases.
- In the case of Cauchy errors distribution, MSE decreases with
increasing sample size, RE increase as sample size increases. MM gives better
efficiency of all parameter estimates than other methods then S is the most
efficiency.
- The performance of MM methbd is high efficiency in the case of
Cauchy errors distribution, and can be used S method Where it also gives high

efficiency.
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MSE | 478.5 | 0.081 | 0.084 | 0.064 | 0.091 | 0.115 | 0.067
RE | 1.00 |5907.4 | 5696.4 | 7476.6 | 5258.2 | 4160.9 | 7141.8
g, | 0964 | 0.995 [ 0.994 10997 | 1.005 | 1.000 | 1.004
Bias | -0.036 | -0.005 [ -0.006 | -0.003 | 0.005 | 0.000 | 0,004
" VSB[ §537 [ 0018 [ 0019 0.014 [0.023 | 0.025 | 0.016
RE | 1.00 |3631.7[3660.5 | 4669.3 | 2842.2 | 2614.8 | 4085.6
g, | 1.812 | 1.504 [ 1502 | 1.502 | 1.505 | 1.502 | 1.500
Bias | 0.312 | 0.004 | 0.002 | 0.002 | 0.005 | 0.002 | 0.000
MSE | 8934 | 0.029 | 0.031 | 0.021 | 0.032 | 0.036 | 0.021
RE | 1.00 |3080.7 [2881.9 [4254.3 | 2791.9 | 2481.7 | 4254.3
F, | 2213 | 0.494 [ 0491 | 0.490 | 0.498 | 0.492 | 0.495
Bias | 1.713 | -0.006 | -0.009 | -0.010 | -0.002 | -0.008 | -0.005
MSE | 1925.0 | 0.037 | 0.039 | 0.031 | 0.044 | 0.064 | 0.033
RE | 1.00 | 52027 [ 49359 | 62096 | 43750 | 30078 | 58333
F, | 1750 | 1.006 | 1.005 | 1.004 | 0.992 | 0.992 | 0.997
n=100 | Bias | 0.750 | 0.006 | 0.005 | 0.004 | -0.008 | -0.008 | -0.003
MSE | 277.8 | 0.012 | 0.013 | 0.009 | 0.013 | 0.018 | 0.009
RE | 1.00 | 23150 | 21369 | 30867 | 21369 | 15433 | 30867
g, | 2302 | 1.499 | 1.496 | 1.497 | 1.503 | 1.501 | 1.499
Bias | 0.802 | -0.001 [ -0.004 | -0.003 | 0.003 | 0.001 | -0.001
|MSE| 5146 | 0.011 [ 0.011 | 0.009 | 0.012 | 0.016 | 0.009
RE | '1.00 | 46782 | 46782 | 57178 | 42883 | 32163 | 57178
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g, 1.508 | 1.504 | 1.505 | 1.504 | 1.484 | 1.497 | 1.505
Bias | 0.008 | 0.004 | 0.005 | 0.004 | -0.016 | -0.003 | 0.005
MSE | 0.036 | 0.028 | 0.030 | 0.029 | 0.107 | 0.115 | 0.063

RE 1.00 | 1.286 | 1.200 | 1.241 | 0.336 | 0.313 | 0.571

,BA . 4.496 | 4.194 | 4.358 | 4.070 | 3.036 | 3.059 | 3.233
Bias | 3.996 | 3.694 | 3.858 | 3.570 | 2.536 | 2.559 | 2.733 |
MSE | 16.06 | 13.73 | 14.97 | 12.85 | 6.755 | 6.863 | 7.630

RE 1.00 | 1.170 | 1.073 | 1.250 | 2.377 | 2.340 | 2.105
12100 ,BA 1 0.992 | 0.995 | 0.992 | 0.996 | 1.013 | 1.020 | 1.007
Bias | -0.008 | -0.005 | -0.008 | -0.004 | 0.013 | 0.020 } 0.007
MSE | 0.021 | 0.016 | 0.017 | 0.016 | 0.068 | 0.060 | 0.036
RE 1.00 | 1.313 | 1.235 | 1.313 | 0.309 0,350 0.583

8", 1492 | 1.497 | 1.495 | 1.499 | 1.497 | 1.503 | 1.503
Bias | -0.008 | -0.003 | -0.005 | -0.001 | -0.003 | 0.003 | 0.003
MSE | 0.023 | 0.018 | 0.019 | 0.018 | 0.071 | 0.066 | 0.040

RE 1.00 | 1.278 | 1.211 | 1.278 | 0.324 | 0.348 | 0.575

Table (4): The Results of Estimation parameters, Bias, MSE and RE for The
Cauchy Distribution : Cauchy (50,0,1) and Cauchy (100,0,1)

Qut. | Crite| OLS Some Robust Methods

Per. ria MH | MHP | MM LTS | LMS S
ﬂAo 20.089 | 0.499 | 0.499 | 0.496 | 0.495 | 0.506 0.492
Bias | -0.589 | -0.001 | -0.001 | -0.004 | -0.005 | 0.006 -0.008 |
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P0=30

%

Bias | 14.80 | 9.467 | 0.058 | 0.061 | 0.105 0.244 | 0.094
MSE | 224.4 | 1382 | 0.665 | 0.671 | 2.465 2.573 | 0.827

RE 1.00 | 1.624 | 337.4 | 3344 | 91.03 | 87.21 271.3
g ] 0.732 | 0.896 | 1.007 | 1.006 | 0.993 | 0.990 0.978
Bias | -0.268 | -0.104 | 0.007 | 0.006 | -0.007 -0.010 | -0.022
MSE | 1.416 | 1.039 | 0.003 | 0.003 | 0.008 0.007 | 0.115
RE 1.00 | 1.363 | 472.0 | 472.0 | 177.0 | 2023 12.31
g ) 0.997 | 1.272 | 1.447 | 1451 | 1.454 | 1.484 1.501
Bias | -0.503 | -0.228 | -0.053 | -0.049 -0.046 | -0.016 | 0.001
MSE | 1.306 | 0.965 | 0.004 | 0.003 0.009 | 0.007 | 0.044
RE 1.00 | 1.353 | 326.5 | 435.3 | 145.1 186.6 | 29.68

Table (3): The Results of Estimation parameters, Bias, MSE and RE for The
Chi-Square Distribution : Chisq (50,4) and Chisq (100,4)

Out. | Criteria | OLS Some Robust Methods
Per. MH ( MHP | MM [ LTS | LMS S
g, 4.528 | 4.231 | 4383 | 4.113 | 3.272 | 3.263 3.364
Bias | 4.028 | 3.731 | 3.883 | 3.613 | 2772 2.763 | 2.864
MSE | 16.40 | 14.09 | 1525 | 13.24 | 8.330 8.307 | 8.571
RE 1.00 | 1.164 | 1.075 | 1.239 | 1.969 | 1.974 1.913
s ra . 0.986 | 0.990 | 0.990 | 0.991 | 1.005 1.003 | 0.997
Bias |-0.014 | -0.010 | -0.010 | -0.009 0.005 | 0.003 | -0.003
MSE | 0.054 | 0.042 | 0.047 | 0.043 0.160 | 0.156 | 0.094
RE 1.00 | 1.286 | 1.149 | 1.236 | 0.338 | 0.34¢ 0.574
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RE 1.00 | 0.433 ] 0.765 | 0.684 | 0.149 0.351 | 0.112
g, 1.009 | 1.003 | 1.009 | 1.006 | 1.058 1.071 | 0.979
Bias | 0.009 | 0.003 | 0.009 | 0.006 0.058 | 0.071 | -0.021
MSE | 0.0000 | 0.0000 | 0.0000 | 0.0000 0.0035| 0.005 |0.0014
PO=0 RE 1 .%0 9.%)0 1. f25 3.:2)0 0.026 | 0.018 | 0.064
% g, 1447 | 1.464 | 1.455 | 1.459 | 1.514 | 1 479 | 1.472
Bias | -0.053 | -0.036 | -0.045 | -0.041 0.014 | -0.021 | -0.028
MSE | 0.003 | 0.001 | 0.002 | 0.002 0.0003 | 0.001 | 0.002
RE 1.00 | 3.00 1.50 1.50 | 10.00 | 3.00 1.50
g 5.458 | 0.739 | 0.538 | 0.543 | 0.459 0.457 | 0.560
Bias | 4.958 | 0.239 | 0.038 | 0.043 -0.041 | -0.043 | 0.060
MSE | 26.93 | 0.064 | 0.003 | 0.0029 0.0154 | 0.024 | 0.017
RE 1.00 | 4208 | 8977 | 8977 | 1749 | 1 122 | 1584
g 0.901 | 1.008 | 1.009 | 1.006 | 1.040 1.039 | 0.979
Bias | -0.099 | 0.008 | 0.009 | 0.006 | 0.040 0.039 | -0.021
Po=10 MSE | 0.562 | 0.002 | 0.0004 | 0.0003 0.003 | 0.004 | 0.002
% RE 1.00 | 281.0 | 1405 | 1873 | 1873 140.5 | 281.0
g, 1279 | 1.458 | 1.451 | 1.457 | 1.453 1.437 | 1.483
Bias | -0.221 | -0.042 | -0.049 | -0.043 -0.047 | -0.063 | -0.017
MSE | 0.524 | 0.003 | 0.0026 0.002 | 0.0066 | 0.006 | 0.002
RE 1.00 | 174.7 | 201.5 | 262.0 | 79.39 87.33 | 262.0
8. 1530 | 9.967 | 0.558 | 0.561 | 0.605 0.744 | 0.594
Bias | 14.80 | 9.467 | 0.058 0.061 | 0.105 | 0.244 | 0.094
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8", 1459 1.716 | 1.717 | 1.722.7 1.706 | 1.731 | 1.738

Bias |-0.041 | 0.216 | 0.217 | 0222 | 0.206 0.231 | 0.238

MSE | 1.594 | 0.050 | 0.048 | 0.0499 | 0.045 | 0.056 0.059

RE 1.00 | 31.88 | 33.21 | 31.94 | 3542 | 28.46 27.02

8", 15.19 1 10.309 | 0.556 | 0.566 | 0.359 | 0.221 | 0.454

Bias | 14.69 | 9.809 | 0.056 | 0.066 | -0.141 -0.279 | -0.046

MSE | 2264 | 154.2 | 3201 | 3.82 | 6.798 | 2.483 5.605

RE 1.00 | 1.468 | 70.73 | 59.27 | 33.30 | 91.18 40.39

s, 0.549 | 0.680 | 0.833 | 0.822 | 0.716 | 0.724 0.759

Bias | -0.451 | -0.320 | -0.167 | -0.178 | -0.284 -0.276 | -0.241

MSE | 3.038 | 2.259 [0.0542| 0.070 | 0.129 0.087 | 0.292

PO=30 RE 1.00 | 1.345 | 56.05 | 43.40 | 23.55 | 34.92 10.40
% 8 1.205 | 1465 | 1.712 | 1.718 | 1.741 | 1.756 | 1.749
Bias | -0.295{-0.035| 0.212] 0218 | 0.241 0.256 | 0.249

MSE | 3.689 | 2.860 | 0.090 | 0.113 | 0.106 0.080 | 0.282

RE 1.00 | 1.290 | 40.99 | 32.65 | 34.80 |46.113 31.08

Table (2): The Results of Estimation parameters, Bias, MSE and RE for
Outliers Generating for The Normal Distribution :Norm(100,0,1)

Out. | Criter | OLS Some Robust Methods

Per. ia MH | MHP | MM | LTS | LMS S
8, 0.536 | 0.550 | 0.542 | 0.544 | 0.407 | 0.465 0.539
Bias | 0.036 0.050 | 0.042 | 0.044 | -0.093 | -0.035 | 0.039
MSE | 0.0013 | 0.003 [ 0.0017 | 0.0019 | 0.0087 0.0037 | 0.0116
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Table (1): The Results of Estimation parameters, Bias, MSE and RE for

Outliers Generating for The Normal Distribution :Norm(50,0,1)
. Out. | Criteri| OLS Some Robust Methods
Per. a ' MH | MHP [ MM | LTS | LMS S
~—1 0435 | 0336 | 0.398 | 0.354 | 0391 | 0.278 0225
Bias 170,065 | 0.164 | -0.102 | -0.146 | -0.109 | -0.222 | -0.275
~SE 10,0043 | 0,027 | 0.0104 | 0.0212 | 0.0122 | 0.054 | 0.079
= 700 | 0.159 | 0413 | 0203 | 0.352 | 0.080 | 0054
{0836 | 0783 | 0812 | 0.781 | 0.734 | 0783 | 0744
Sros 10164 [ 0217 | 0.188 | 0219 | 0.266 | -0.217 | -0.256
~ISE | 0.027 | 0047 | 0.035 | 0.048 | 0.071 | 0.048 | 0.066
RE 100 | 0574 | 0.771 | 0.563 | 0.380 | 0.563 | 0.409
PO=0 [ 7711 | 1728 | 1717 | 1.727 | 1698 | 1.676 | 1.729
% “Bias | 0211 | 0228 | 0217 | 0227 | 0.198 | 0176 | 0229
~iSE 0,044 | 0.052 | 0.047 | 0.0517 | 0.039 | 0.034 | 0.053
RE 100 | 0846 | 0936 | 0.851 | 1.128 | 1.294 | 0.830
15356 | 0578 | 0410 | 0379 | 0.313 | 0264 | 0.208
Bias | 4756 | 0.078 | 0.899 | -0.121 | -0.187 | -0.236 | -0.292
SE | 3657 | 0.025 | 0.011 | 0.017 | 0.043 | 0.059 | 0.093
=E T 100 | 1065 | 24155 | 1562.9 | 617.0 | 450.3 | 285.7
0759 | 0.810 | 0.817 | 0.801 | 0.741 [ 0801 } 0.733
Sias | 0241 -0.190 | -0.183 | -0.199 [ -0.259 | -0.199 | -0.267
PO=10 rsE | 1546 | 0,039 |0.0344 | 0.409 | 0.069 | 0.043 | 0.074
% —RE 1100 | 31.95 | 36.22 | 3.046 | 18.06 | 28.98 | 44.50
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The empirical methods are compared using the criteria of estimation
parameters, bias, mean square errors (MSE) and relative efficiency. When
comparing to the MSE of the ordinary lea;&;t squares estimate (OLS) for each |
robust methods. Relative efficiency is calculated by: h

M SE (OLS)

R E = .
M SE (RobustM ethod )

R n N
Where MSE = %—Z (,B— ﬂ), Where g is the estimated value of B, B
i=l

is the true value and R denotes the number of replications. When R.E is
greater than 1, the robust method is considered more efficient than
OLS.(Koller and Stahel, 2011)

The empirical results are presented in tables (1) to (5) displaying the
properties of different robust estimation methods for different distributions of
errors with different percentages of outliers and different sample sizes. Tables
(1 and 2) presents the empirical results for normal distribution. While table
(3and 4) present the empirical results for chi-square distribution, and Cauchy
distribution. In addition, the tables in this section present the parameter
estimates, bias, MSE and RE.
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where \/;'T is equal to the function (8), analogous to the one that is derived
from the Z-test. For finite sample sizes, this asymptotic approximation can be
insufficient. To better align the actual coverage probability with its nominal
value (=95%), substitute the value 1.96 with the quintile value of the
corresponding ¢ distribution (i.., we take into account that the standard

A

deviation o must be estimated).

(5) Empirical Results

I generated random samples using the following multiple linear regression

coefficients values are S =05 Bi=1 = 1.5, Obtain the error term using
five possibilities, (i) normal distribution N (0,1), (ii) Chi-square distribution
with (DF=4), and (iii) Cauchy distribution(0,1) where the values 0, 1 are the
location and scale parameters for Cauchy distribution, The values Xj;, Xzare
drawn from uniform distribution on initerval (0, 1), I select a sample size of n
— 50 andl00 and consider that the sample may contain outliers , finallyto
investigate the robustness of the methods against outliers, we randomly
generated different percentages of outliers (PO= 0%, 10%, and 30%).

All empirical results are based on 1000 replications. We compare six
estimators in this case: (1) Least Squares Estimators (OLS), (2) M- Huber
(MH), (3) M-Hampel (MHP), (4) MM- Estimator (MM, (5) Least Median of
Squares (LMS), (6) Least Trimmed Squares (LTS)and S- Estimators (S). All
computations are obtained based on the R language.
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e, =Y , - X i/ B i (]6)
Staudte and Sheather (1990), illustrated a reasonable approximation of the
covariance matrix of B« as:
22, v (Z,) (x 'x )
2
(X v’z ,)] =12

2y n a7

And multiplying the previous equation in the correction factor w/(n-k) , it

ns

becomes as follows:
n 5 . (X 'IX )— 1
(18)
Hogg (1979), has shown that, the distribution of the robust estimators is

"Th s w'm,-x,-’ﬁ,)/s]

- approximately normal if the sample size is large as:

A

B_, - B L
Nyaccd ~ N(0,1) (19)

so, the usual statistical inferences about the unknown parameters can be made.

zZ , =

The asymptotic 95% confidence interval for the parameter B is now

given by
ﬁi—l.Q(SSe(ﬂAJ (20)

Mt (5] . £
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o =8, (0),...... e, (8)) (1D
The scale estimator can be obtained through the following dispersion

minimization problem

i=1
K is often put equal to E¢ [,D] , where @ is the standard normal. The value of

P defined as

,&i =argminS {&,(f);-£, A}a3z)

Sﬁbjectto
1 (elB)
A, nle(s(ﬂ)) ()

S- estimators are more robustly than the LTS estimator, because S- estimators

have smaller asymptotic bias and smaller asymptotic variance in the case

contaminated data. ( Rousseeuw and Leroy, 1987), and Pitselis, 2013))
(4)Inference for M-Estimators

Birkes and Dodge (1993) pointed out that, the distribution of the M- estimate

ﬂu cannot be specified exactly, but for large sample size, they suggested that,
asymptotlc normahty for M- estimators with normal distribution.

The offer variance- covariance matrix for robust regression is:

o 'E [!/// (2 )] (x 'x )_,

[ (v (2 N1 , (15)

where
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The constant 0.6745 makes s an approximately unbiased estimate of ¢ if n
is large and the distribution is normal, p is a symmetric, positive definite
function gives the contribution if each residual‘ to the objective function (7).
(3.4) MM-estimator: MM estimation is a special type of M- estimation
developed by Yohai (1987). Some properties of MM- estimator are follows as;
They are highly efficient when the errors have normal distribution and Their
BP is 0.5.

The three stages of computing MM-estimator can be illustrated in detail as

follows:

1) Computing an initial consistent estimate £ with high BP but not necessarily
efficient, The S- estimator can be used as the initial part of an overall MM-

estimate computational strategy.

2) Computing a robust scale o ofthe residuals s () .

3) The final step is using M- estimate the regression parameters.
(3.5) S- Estimators: The S - estimators introduced by Rousseeuw and Yohai
(1984) from another class of high BP, are a generalization of LMS and LTS
and have the same asymptotic properties corresponding to M- estimators and
also handle 50% of the outliers appearing in the data. They are the first high

BP regression to achieve the usual n~"2 consistency under appropriate
regularity conditions. They are defined by a minimization of the dispersion of

the residuals:
m;nS(el(ﬁ), ..... e,(8)) (10)

With the final scale estimate
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outlying data points are trimmed , this method is computationally equivalent
to LS . However, if there are more outlying data points that are trimmed, LTS
is not as efficient.

In LTS, the objective is to minimize the sum of the smallest 50% squared
residuals. LTS is a robust estimator with 50% breakdown point, which means
that the estimator is insensitive to corruption due to outliers, provided that the
outliers represent less than 50% of the data set. LTS has the advantage' of
being statistically more efficient than LMS. (Angela Y. Wu et al, 2007)

(3.3) M- Estimators: The most common general method of robust regression
is M-estimation, introduced by Huber (1964), the method of M-estimation as a
ge;leralization to maximum likelihood estimation in context of location
models. In simple terms, the M-estimator minimizes some functions of the
residuals. As in the case of M-estimation of location, the robustness of the
estimator is determine by the choice of weight function.

Consider the following linear model:

Y =xB + u, , where Y is the vector of response variable, x is an nxp matrix of
independent variables, g is a p xlvector of unknown parameters, and u, is
random error with expectation zero and variance o’ .

Fox (2002) described The general M-estimator as follows:

mini p(e,)=minzn: P(}’.-"Xf/%) (7)
i=l im]

Or minip(%):mini p((—y—"l%'—ﬂ—)) (8)
i=1 i=l

Where s is the estimated scale of residuals and a popular choice for s is,

S = median e, — median (¢, )|/ 0.6745(9)
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g,

s 2.5

1 if
W= (4)The outliers points are considered when
0 oterwise

€ i
their ;o > 2.5, where e, is computed based on the final fit .

Then the final scale estimate S for LMS regression is give by :

2 (5)

The a above estimator is very robust with respect to outliers in Y as well as
outlierin x . Unfortunately, the LMS performs poorly from the point of view
of asymptotic efficiency. (pitselis, 2013).

(3.2) Least Trimmed Squares: The LTS estimate is defined as follows:

B rs = min im ize Zl (e}),i=12,.....h. (6)

Where (¢}), <), S <(e}), are the ordered squared residuals sorted from
smallest to largest and 4 is the number of these terms which are included in
the summation called the coverage of the estimator. ( Rousseeuw,1984)

LTS is calculated by minimizing the # ordered squares residuals, where
h=[ni2]+[(p+1)/2] , withn and pbeing sample size and number of
parameters, resﬁectively .The largest squared residual are excludea ﬁ-om the
summation in thls method, which allows those outlier data’ pdint's to be
excluded completely. Depending on the value of #» and the outlier. data

configuration, LTS can be very efficient. In fact, if the exact numbers of
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(3.1) Least Median of Squares: Rousseeuuw ( 1984), proposed the Least
Median of Squares (LMS) has the highest possible BF of 50% , by minimizing

the median of squared error as follows:
ﬁms = min median e’ (B), )

where ,25 is an estimate of 8. The LMS estimator has 50% breakdown point.
A robust analysis with LMS may be conducted as follows:

First step is to obtain the standardized residuals from LMS analysis,

Then remove the observation corresponding to large outliers, (a above 2.5
stapdard deviations),

Then run the OLS on the remaining data. (Onder and Ozet, 2001)

Instead of taking the median of the ordered squared residuals,v consider h*

order statistic, where & =[n/2]+[( p+1)/2],n denotes the sample size, and p is
the number of regression parameters. The symbol | ] mean " integer portion
of ". LMS estimator has BP equal ((n-p)/2]+1D/n.

Apart from the regression coefficients, the scale parameter S (the dispersion

of errors e, ) has also to be estimated in a robust way.

As an initial estimate we use the following

s =1.4826(01+

fmed e (B n#p G)

n

Where 7 is the sample size, p is the regression parameters, and the factor

1.426= ,and @ is the standard normal cumulative function .

1
$7(0.75)
The initial scale estimate s° is then used to determine a weight w, for the i

observation as follows :
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ii.

iii.

iv.

leverage points are used to define robust techniques performance in a
theoretical sense. Efficiency shows that, how the robust technique performs
well relative to LS in case of clean data (without outliers). High efficiency is
mostly desired on estimation .BP is a measure for stability of the estimator
when the sample contains a large portion of outliers. It gives the minimum
portion of outliers which may produce an infinite bias. ( Alma, 201 1§
Generally, robust regression methods aim to justify the following goals:
Consistency, asymptotic normality and high efficiency of the estimators if
there are no model violations.

Methods for forming confidence intervals for the unknown parameters and for
testing hypotheses about them.

Relative insensitivity of the properties in (i) and results in (ii) to slight
violations of the model.

Simplicity of theory.

Ease of computation, given a standard computer package ( staudte, et al,
1990). ‘ ‘

To conclude, if the errors having a non -normal distribution, we might
consider a robust regression method, particularly in cases where the error
distribution is heavier-tailed distribution and generate more errors than the
normal. ALS analysis weights each observation equally in getting parameter
estimates. Robust methods enable the observation to be weighted unequally
-Essentially, observations that produce large residuals are down-weighted by a
robust estimation method.

In this section, we introduce some methods of robust regression

estimators as follows:
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values and €n T,,% ) is the smallest fraction of contamination that can cause

the estimator T to take values arbitrarily far fromI" .
The breakdown point usually does not depend on the sample value x, but

depends only slightly on the sample size n. (pitselis. G, 2013)

Definition 2: Outliers are defined to be observations which deviate from the
pattern set defined by the majority of the data and are very dangerous of the
data and many classical; statistical procedures. (Hampel et al, 1986)
Outliers in linear regression model are classified into:
Y- Outlier (Vertical OQutlier); This is a point that is outlying only because its
Y-coordinate is extreme and is called (Vertical Outliers). In this case, the
presence of such values affects the LS — estimates, in particular the estimated
intercept also, X — Outlier (Leverage Point); This type is outlying only in
regard to the x- coordinate. Such apoint can cause some robust regression
estimators to perform poorly, but the more modern robust estimators are not
undermined by x- outliers. Also, they are called (Leverage Point) and X and
Y- Outlier; This type is outlying in both coordinates may be a regression
outlier, or residual outlier (or both) or it may have a very small effect or even
on effect on the regression equation. (Ryan, 2009)

(3)The Robust Regression Approach
Robust regression is an important method for analyzing data that are
contaminated with outliers. Robust regression analysis provides an alternative
to least squares regression when fundamental assumptions are unfulfilled by

the nature of the data. The properties of efficiency , breakdown and high
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(1) Introduction

It is well known that, The linear regression model is one of the most widely
used tools in statistical analysis and the least squares method is a very popular
estimation technique for this model. In this respect, the classical estimators
for the regression coefficients and error scale are the well-known least squares
estimators. These estimators are optimal under normal errors but extremely
sensitive to outliers and unusual observations in the data set. This particularly
the case for the residual scale estimators, and as a result many more robust
estimators have been proposed as alternatives. Much attention has been paid
in statistical literature to robust and efficient estimation of the regression
parameters. In this paper is organized as follows: Section (2) we present some
definition of robust inference. Section (3) we present some robust regression
approach. Section (4) we present inference for M-estimators. Section (5) is
mainly devoted to an empirical results. Finally, in section (6) we give
summary and conclusions.

(2)Robust Inference
We introduce some basic concepts of robust statistics that will be used in this
study:
Definition 1: The Finite — Sample Breakdown Pointof the estimator of the
observed sample X=(X,X,...,X, ) is defined as

& T % ) =min(™ ;bais (m;T,,x ) <) (1)
n

bais(m:;T,x)

where is the maximum bias that can be contaminated by the

(presence of outliers), 7 is the number of original points replaced by arbitrary
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Abstract

The method of least squares of the most commonly used methods for
estimating the parameters of linear regression models,this method requires the
availability of several assumptions for the capabilities more efficiently. So
robust methods can be used to give better results than OLS when there are
outliers. This research discussessome robust regression approach and
inference for M-estimators. Empirical study illustrates that robust methods

aremore efficiency compare the OLS, when the data contain outliers.

Kéywords:Bootstrap, Linear Regression, M- estimators, Qutliers, Robust

Inference, Statistical Inference.
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